2,627 research outputs found

    Probing GABAA receptors with inhibitory neurosteroids

    Get PDF
    Îł-aminobutyric acid type A receptors (GABAARs) are important components of the central nervous system and they are functionally tasked with controlling neuronal excitability. These receptors are subject to post-translational modification and also to modulation by endogenous regulators, such as the neurosteroids. These modulators can either potentiate or inhibit GABAAR function. Whilst the former class of neurosteroids are considered to bind to and act from the transmembrane domain of the receptor, the domains that are important for the inhibitory neurosteroids remain less clear. In this study, we systematically compare a panel of recombinant synaptic-type and extrasynaptic-type GABAARs expressed in heterologous cell systems for their sensitivity to inhibition by the classic inhibitory neurosteroid, pregnenolone sulphate. Generally, peak GABA current responses were inhibited less compared to steady-state currents, implicating the desensitised state in inhibition. Moreover, pregnenolone sulphate inhibition increased with GABA concentration, but showed minimal voltage dependence. There was no strong dependence of inhibition on receptor subunit composition, the exception being the ρ1 receptor, which is markedly less sensitive. By using competition experiments with pregnenolone sulphate and the GABA channel blocker picrotoxinin, discrete binding sites are proposed. Furthermore, by assessing inhibition using site-directed mutagenesis and receptor chimeras comprising α, ÎČ or Îł subunits with ρ1 subunits, the receptor transmembrane domains are strongly implicated in mediating inhibition and most likely the binding location for pregnenolone sulphate in GABAARs

    Evidence of an advantage in visuo-spatial memory for bilingual compared to monolingual speakers

    Get PDF
    Previous research has indicated that bilinguals outperform monolinguals in cognitive tasks involving spatial working memory. The present study examines evidence for this claim using a different and arguably more ecologically valid method (the change blindness task). Bilingual and monolingual participants were presented with two versions of the same scenes and required to press a key as soon as they identified the alteration. They also completed the word and alpha span tasks, and the Corsi blocks task. The results in the change blindness task, controlled for group differences in non-verbal reasoning, indicated that bilinguals were faster and more accurate than monolinguals at detecting visual changes. Similar group differences were found on the Corsi block task. Unlike previous findings, no group differences were found on the verbal memory tasks. The results are discussed with reference to mechanisms of cognitive control as a locus of transfer between bilingualism and spatial working memory tasks

    Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat

    Get PDF
    Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo

    Dry Taps? A Synthesis of Alternative “Wash” Methods in the Absence of Water and Sanitizers in the Prevention of Coronavirus in Low-Resource Settings

    Get PDF
    Objective: Social distancing and hand washing with soap and water have been advocated as the main proactive measures against the spread of coronavirus. We sought to find out what other alternative materials and methods would be used among populations without running water and who may not afford alcohol-based sanitizers. Results: We reviewed studies that reported use of sand, soil, ash, soda ash, seawater, alkaline materials, and sunlight as possible alternatives to handwashing with soap and water. We identified the documented mechanism of actions of these alternative wash methods on both inanimate surfaces and at cellular levels. The consideration of use of these alternative locally available in situations of unavailability of soap and water and alcohol-based sanitizers is timely in the face of coronavirus pandemic. Further randomized studies need to be carried out to evaluate the effectiveness of these alternatives in management of SARS-Cov-2

    MitoNeoD:a mitochondria-targeted superoxide probe

    Get PDF
    Mitochondrial superoxide (O2⋅−) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅−, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅− probe, MitoNeoD, which can assess O2⋅− changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅−-sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅− over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅− from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅−production in health and disease

    Evaluation of the LEP Centre-of-Mass Energy Above the W-Pair Production Threshold

    Get PDF
    Knowledge of the centre-of-mass energy at LEP2 is of primary importance to set the absolute energy scale for the measurement of the W-boson mass. The beam energy above 80 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is calibrated against precise measurements of the average beam energy between 41 and 55 GeV made using the resonant depolarisation technique. The linearity of the relationship is tested by comparing the fields measured by the probes with the total bending field measured by a flux loop. This test results in the largest contribution to the systematic uncertainty. Several further corrections are applied to derive the the centre-of-mass energies at each interaction point. In addition the centre-of-mass energy spread is evaluated. The beam energy has been determined with a precision of 25 MeV for the data taken in 1997, corresponding to a relative precision of 2.7x10^{-4}. This is small in comparison to the present uncertainty on the W mass measurement at LEP. However, the ultimate statistical precision on the W mass with the full LEP2 data sample should be around 25 MeV, and a smaller uncertainty on the beam energy is desirable. Prospects for improvements are outlined.Comment: 24 pages, 10 figures, Latex, epsfig; replaced by version accepted by European Physical Journal

    Global biogeographic patterns of avian morphological diversity

    Get PDF
    Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both ‘cradles’ and ‘museums’ of phenotypic diversity

    Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia.

    Get PDF
    Nitrate (NO3-) and nitrite (NO2-) are known to be cardioprotective and to alter energy metabolism in vivo NO3- action results from its conversion to NO2- by salivary bacteria, but the mechanism(s) by which NO2- affects metabolism remains obscure. NO2- may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2--dependent S-nitrosation of proteins thiols in vivo Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2- under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2- in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2- on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2-, combined with the lack of S-nitrosation during anoxia alone or by NO2- during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2- exposure

    Development and Reliability of Countermovement Jump Performance in Youth Athletes at Pre-, Circa- and Post-Peak Height Velocity

    Get PDF
    The purpose of this study was to establish the intrasession reliability of various outcome, propulsion and braking phase countermovement jump (CMJ) variables and to compare the mean differences in youth athletes at different stages of maturity. Thirty male participants, aged 10-16 years, were grouped as either pre-, circa- or post-peak height velocity (PHV) according to their percentage of predicted adult height. All participants performed 3 CMJ trials on a force plate, sampling at 1000 Hz. A one-way ANOVA identified statistically significant differences between maturity groups for all CMJ variables (P<0.05) excluding propulsion peak rate of force development (RFD), braking peak velocity and countermovement depth. Post-hoc analysis revealed that the significant differences in CMJ variables were between the pre- to post- and circa- to post-PHV groups (P <0.05), with moderate to very large effect sizes. Relative and absolute reliability improved with maturity as the post-PHV group demonstrated superior reliability scores (ICC = 0.627-0.984; CV% = 3.25-21.55) compared to circa- (ICC = 0.570-0.998; CV% = 1.82-20.05) and pre-PHV groups (ICC= 0.851-0.988; CV% = 2.16-14.12). In summary, these results suggest that the biggest differences in CMJ performance are observed between preto post- and circa- to post-PHV, and that careful consideration is warranted when selecting variables in youth athletes at pre- and circa-PHV, given the lower reliability scores observed

    NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation

    Get PDF
    EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.
    • 

    corecore